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Resonance fluorescence in intense radiation fields 
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Iowa 50011, USA 

Received 7 November 1974, in final form 28 November 1977 

Abstract. The spectral density of resonance fluorescence from a two-level atom in a 
monochromatic radiation fieldof arbitrary strength and detuning is calculated by solution 
of the wave equation. A basis set in which the strong coupling of the atom and the 
quantised incident field is diagonal is used, and the resulting infinite set of coupled 
equations is solved by truncating them to a set of N equations and finally proceeding to the 
N +a3 limit. The resulting spectral densities of the inelastically scattered field for various 
levels of intensity of the incident field and degree of detuning are found to be identical 
with those of Kimble and Mandel obtained by solution of the coupled equations of motion 
of the atom and the radiation field in the Heisenberg picture. 

1. Introduction 

The elementary problem of interaction of a two-level atom with a monochromatic 
near-resonant field and the spectral density of the resultant fluorescence has received 
much attention in recent years theoretically and experimentally. Availability of single- 
mode, intensity-stabilised cw lasers, and atomic systems in collision-free conditions 
that closely approximate two-level systems, have enabled comparison of theoretical 
predictions with experiments (Hartig and Walther 1973, Schuda er a1 1974, Wu et a1 
1975, Gibbs and Venkatesan 1976). In these experiments the atoms are exposed to 
the single-mode, near-resonant fields of intensity that correspond to a Rabi frequency 
of the order of 5-10 times the radiative linewidth for the transition of interest, for 
durations large compared with the radiative lifetime of the excited state. 

On the theoretical side, Mollow (1969), treating the incident field classically, 
obtained a three-peaked power spectrum by solution of the equations of motion of the 
atomic system factorised from the complete system of atoms and the scattered field by 
a Markoffian approximation. Swain (1975) by employing a continued fraction pro- 
cedure solved the wave equation and has obtained the spectral densities for arbitrary 
intensities and detuning of the incident field. Procedures involving solution of relevant 
master equations (Carmichael and Walls 1976) require the Markoffian assumption of 
S-correlation of the free field and the quantum regression theorem (Lax 1967) for 
evaluation of the two-time correlation functions of interest. The validity of these 
assumptions has been proved subsequently for this problem (Mollow 1975, Kimble 
and Mandel 1976). Kimble and Mandel (1976, 1977) have obtained the spectral 
density of the scattered light by solving the coupled Heisenberg equations of motion 
of the atom-field system and have presented the spectra for various intensities, 
detuning and bandwidths. They demonstrate lucidly in their 1976 paper that the 
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quantal features of the radiation field are tested only by examining the steady-state 
two-time correlation functions of the field (via the spectral density of the fluorescence) 
and the intensity. Thus their analysis illustrates the significance of the solution and 
experimental verification of this basic problem. The reader should also refer to the 
works of Agarwal (1974) and Hassan and Bullough (1975). A complete list of 
references may be found in the paper by Kimble and Mandel (1976). 

In this paper we treat the incident field quantally, and by employing a basis in 
which the strong coupling of the atom and the incident field is diagonal, we solve the 
Schrodinger equation for long times and weak coupling of the atom with all the modes 
of the electromagnetic field from which the incident modes are excluded. Stroud 
(197 1) using the above basis obtained short-term solutions that lead to incorrect 
spectral densities for the experiments of interest. Since submission of the first draft of 
this manuscript, Smithers and Freedhoff (1975) with this strong-coupling basis have 
solved the on-resonant excitation problem for times very much longer than the 
radiative lifetime. Since there is general agreement on the zero-detuning problem, it is 
of interest to solve the general case of arbitrary detuning for comparison with the 
results of Kimble and Mandel (1976). The paper is organised as follows. Section 2 
presents the method of solution of the infinite set of coupled equations. In Q 3 we 
calculate the spectrum of the resonantly scattered field. Section 4 analyses the decay 
spectrum for various limiting cases of intensity and detuning. Section 5 compares the 
method of this paper with those of Mollow (1969, 1975), Kimble and Mandel (1976) 
and the ‘dressed atom’ method of Cohen-Tannoudji and Reynaud (1977). 

2. Method of solution 

We consider a two-level atom interacting with a strong, near-resonant, mono- 
chromatic field of frequency w. The ground level 0 is located at wo below the excited 
level 1. The basis in which the interaction VO of the quantised radiation field with N 
quanta, and the atom is diagonal may be written as 

Similarly the states in which N quanta of scattered photons of momenta kl, . . . , k,, 
and N - n  quanta of incident field are present yield the strong-coupling basis states 

Ikl, .  . . , k,; *)= [ ( z ) l N - n ;  O)*(:)lN-n-l; l ) ] /k l , .  . . , k,). ( lb)  

For intense incident fields N >> n, the coupling coefficients C and S in equations (1) are 
taken to be independent of n. The energies of these eigenstates of equation ( l b )  of the 
Hamiltonian of the atom and the incident field are given by 

A?..., = s ~ . . . ,  + ~ ( A + ~ ) = A * + s ~ , . . ,  

where 

A = o - - w ~ ,  

SI ...,= w1+. . . + w , - n w  

0 = (A2 + 4~ 2)1’2 

K = ( N  - n ; 01 VoIN - n - 1 ; 1) ; 
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C and S are related to the Rabi frequency K and the detuning frequency A as 

c = 2 ~ / 2 n ( b  + a), S=(A+Q)/20;  

wl,. . . , 0, are the frequencies of the scattered quanta. The state function at time t 
may be written in the basis in equation (1): 

It) = b+(t)l+ )+ b- ( t ) l - )  

+ f I dkl I - .  . J dkn(bT.,.n(t)Ikl, 7 kn; +>+bT...n(t)lkl, * * 9 k n ;  ->I 
(2) 

n = l  

where the amplitudes b:.,., ( t ) ,  symmetric in their indices, are given by 

bf..,n(t)=(kl, * * 9 k n ;  *It) 

and the basis vectors Ikl, .  . . , k,) are normalised as 

1 
n! P (k;, k;, . . . , kllkl ,  k2, . . . , k,) = - 1 S(k 1 - k;.). . . S(kn -kL), 

where the subscript P means the sum runs over all permutations of the indices 1, . . . , n 
of the k' vectors only. 

Considering the interaction V of the atom 'dressed' by the incident quanta, with 
the modes of the electromagnetic field (from which the mode of the incident field has 
been excluded) as a perturbation, the Schrodinger equation in the interaction picture 
may be solved by a Fourier transformation (Heitler 1954). The interaction may be 
written as 

V ( t ) = - p . E = p ( t ) .  I dkUk(r)ak(t)+adj (3 1 

where the electric field E has been decomposed into its normal modes: 

E(r,  t )= i  (h~k/167r~)~'*&ak exp[i(k. r-wkt)] dk+adj  = - dk Uk(r)ak(t)+adj. 

Here p is the atomic dipole operator, wk = c(k1, & is the polarisation vector and at is 
the annihilation operator for the mode k. The Schrodinger equation may now be 
written as a system of coupled equations for the amplitudes b?...,(t), for the initial 
condition b:.,.,(t = 0)= 0 and b*(t = 0)= bz ,  

I I 

ia 
-(*It) = id' 
at 

ia 
, t ( k l ;  *It) = id: 
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In the above equations Vi = uk,(r = 0), and the matrix elements of the dipole opera- 
tor, in the rotating-wave approximation, may be obtained from equation (1) as 

In obtaining equations (4) we have used the results 

The notation (1, .  . . ,$, . . . , n)  stands for the set (1,. . . , n) from which j is excluded. 
With the transformation 

equations (4) may be written as a set of coupled algebraic equations for b?...n(E) as 
follows: 

(E - A  *)b* = bo' * (:) 1 dkl  Ut . p (Cb++ Sb-)  (5a)  
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This coupled hierarchy of equations is solved as follows. Ignoring, for the time being, 
the decay of the Ikl; *) state (56 )  may be solved approximately as 

which on substitution in ( 5 a )  yields 

(E  - A *)b * = bo' f 2 f (  :) (Sb+ - Cb-) (6)  

where we have defined 

U and y are the radiative level shift and decay constant of the excited state. 
Specifically assuming that the atom is initially in its ground state, i.e. bo' =[:), 
equation (6 )  yields the solution 

(E - A - 2f)@ b+(E) = 
(E  - R +)(E - R -) 

where R' are roots of the quadratic 

(E - A+)(E - A - )  - 2fE + 2f(A +C2 + A -S'). (9) 

The neglect of the decay of the Ikl;*) state in obtaining the solution for b* clearly 
amounts to neglect of corrections of the order CY, the fine structure constant, to the 
energy of the Ikl; k) state, and thus amounts only to the assumption of monotonic 
dependence on energy of U and y. 

To solve for b: (E) ,  similarly we start with the approximate solution 

6 f2 [ E )  = 2-'/'( 3 [U? . p * (Sb t - Cb Y ) + U:  . p * (Sb t - Cb T ) ] / [ E  - A 7 2  ) (10) 



1156 V Sethu Raman 

from which we obtain 

I dkz U2.p(Cb:2 + S b l z )  

The second integral on the right-hand side of ( l l ) ,  as will be clear below, leads to 
integrals of the type { dk2( U,  . p ('/(E - A T2)(E - R $) which may be shown to vanish. 
Thus using equations (lo), (11) and (7) we solve equation ( 5 6 )  to obtain 

where P = SCQ/(E - R+)(E -R-) and R f  are roots of the quadratic of the form (9) 
with A' replaced by A f .  From an examination of the contribution of the two terms in 
equation ( 5 c )  involving UT. p* and U ; .  p* to b f 2  in equation (5b) ,  it is clear that 
the latter corresponds to corrections to the energy of the state Ikl; *) due to virtual 
emission and re-absorption of quanta of momentum k2, while the former leads to 
diagrams corresponding to the sequence Ikl; *)-* Ikl, k2; *)+ lk2; *)+ (kl, k2; *)+ 
Ikl; k) and thus their contribution vanishes in the limit of infinite normalisation 
volume. 

Proceeding similarly we arrive at the general solution 

R?..., are roots of equation (9) with A' replaced by A ?  ...,,. 

normalisation volume, by direct substitution in equations (5). 
The solution in equation (13) may be verified to be exact in the limit of infinite 

3. Spectrum of the scattered field 

The steady-state spectrum of the scattered field may be obtained from the amplitudes 
b:,..,(t + m) for n >> 1 as 

m 

b;...,,(f + 00) = i(27r)-' d E  b t  ...,( E )  exp[ - i(E - A:.. .n)t]  
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where we have defined U T  = UT. p* etc. In equation (15) we have replaced the 
solution in equation (13) by that obtained by turning off the decay of the Ikl . . . k,; *) 
state. This is valid for n >> 1 corresponding to the experimental situation of transit of 
the atom through the exciting field and detection of scattered quanta over intervals 
much larger than the lifetime for spontaneous decay of the excited state. In the 
appendix we show that the spectral densities obtained from the amplitudes in equation 
(15) are identical with those obtained by direct calculation of the photon emission rate 
spectrum. The probability that a photon of wavevector kl is emitted is obtained from 
the probability of emission of n photons, kl, . . , , k,, by integrating the latter over the 
unobserved n - 1 quanta as follows: 

wfl(kl)= J dk2. . . I dkfl(lb :... f l (~)12+lb~... f l (~)12). (16) 

From equation (14) we can write 

where 

G f ( E = A L , ) =  l/(A : . . , f l -  R ~ . . . ~ . . . f l ) - l / ( ~ ~ . . . n - R ~ . . . ~ . . . f l )  

and so on; z is complex for A # 0 and is defined from equation (9) as follows: 

R L  =Si. . .f l  +h+f f 2 ,  z = i[(h + 2f)2 + 4 ~ ~ 1 " ~  = R + I .  

After some lengthy algebra, the sequence WZ,. . . , W, is obtained in terms of 
integrals involving Gf as follows: 

W2(kl)=~~~l~~(~/27r)(~~/~~~~)~[A(~G:)~+~G;~~)+2F+2 Re C(G: +G;)] 

W ~ ( ~ ~ ) = ~ ~ U ~ ~ ~ ( ~ / ~ ~ ) ~ ( K ~ / ~ Z ~ ~ ) ~ [ A ~ ( ~ G : ~ ~ +  IG;12)+4AF+4 Re cC 
+ 2  Re(& + cA)(G: - G;)] 

+2nA"-2F+4 Re Cc(An-3+A"-4H+.  . . + H " - 3 )  

+ 4  Re C6A(H"-4+2AH"-5+.  , .+(n -3)A"-4) 

+ 2  Re &(G: -G;)+2 ReAc(H"-3+AHn-4+ .  . (18) 

The quantities A, C, e, F, H are defined as the integrals 

dw2lG; 1' = 27ri(1/25 - 1/25* - 1/2f+ - 1/2f-) 
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C = dozG& (G: 1' 

= 2.rri[5+/(~ +25)-5+/(6 + 2 f + ) + t T / ( ~  -25*)-55/(8 +2f-)] 

J 
e = C(S + -6) 

H = J dm(G;)*G?z 

=2.rri[l/(S+2f)+l/(S-25*)- l/(S+2f-)-l/(S+2f+)]. (19) 

In equations (19) (and hereafter) we have dropped the subscript 1 on S etc. We have 
also defined 

t = R + f ,  

51 = 1(1/5 - I/!+), 

Using the identities 

H"- '+H"- 'A+ .  . .+, 
and 

" - I =  (H" - A " ) / ( H  - 1  

I J " - ' + ~ A H " - ~ + .  . .+(n -1)A"-'= [H" -nHA"-'+(n - l )A"]/(H-A)* 

we finally obtain from equation (18) the result, for the limit n +a, 

4. Analysis of the decay spectrum 

For the resonant intense field limit equation (20) reduces to a simple form. For 
K / Y  >> 1, K/AO >> 1 we have: 

Z = K  f* -f 
A 2. -2?Ti[f/(~ - f2) + 1 /f]; H 5 2 r i [  1 /(S + 2~ + 2f) + 1 /(S - 2K + 2f) - 2/(6 + 2f)l 

c = e* = - (2?Ti/2f)[ 1 /(S + 2 K  + 2f) - 1 / (S - 2K + 2f)l 

CC * / (A - H )  - (2 Xi/4f2)(S + 2f/S)[ 1 / (8 - 2 K + 2f) - 1 / (6 - 2 K + 3 f) + ( K + - K )] . 
The real part of the latter expression is regular at S = 0. For IS1 << K ,  the contribution 
from this term is O(Y ' /K ' )  that arises from F. Thus we may set (6 +2f/S)= 1 and 
finally obtain 

3 +  
F+2Re(-)=9(-+ CC* 4 

A - H  S2-4f2 ( 6 - 2 ~ ) ~ - 9 f ~  (S+2~) ' -9f '  

This spectral profile has been obtained by Mollow (1969), Smithers and Freedhoff 
(1975), Carmichael and Walls (1976), and Kimble and Mandel (1976). The ratios of 
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the heights of the central and sideband maxima (3 : 1) and their width, at half maxi- 
mum (3 : 2), differ from the prediction resulting from one-photon approximation of 
Stroud (1971). In the latter approximation we have 

In the limit of strong fields and large detuning, i.e. A0 >> K >> y, we can write 

A - Ao, z -4A+fAo/A, 5+ = -if, 5 - z  -A’/4~’f 

f+ = 2f, 

A - -2mA2/4f~’ 

f- - 2~’f/h’ 

2m 
4f[l/(S +2f-)- 1/(S +A+2f)] 

C -  

Cc* 2m A’ ’ 1 ---- - 
A - H -  f (2K2) (S+2f-)’[(S+2f)’-A2] 

C t *  477 A2 1 
T(y) (6’ - 4f 1 )[ (S - A)’ - 4f ’I[ (S + A)’ - 4fz] 

=+) 477’ A S ( 0  -0’) 

(23) 
1 F + R e ( m )  Cc*  =--[--(-) 27r 477 A S(w - U ‘ ) +  2 + 

S -16f’+(S-A)’-4fZ (S+A)’-4f2 ‘ 

The ratio of the heights of the peaks at S = 0 and S = *A of the inelastically scattered 
part in equation (23) of 1 : ~(A/K) ’  does not agree with the result 2 : (A/K)2 of Kimble 
and Mandel (1976); though their relative widths are in agreement. The one-photon 
approximation cannot predict two outer peaks of equal intensity in this limit for the 
following reason. For large detuning the I*) and Ik; *) states are approximately 
IN - 1, l), IN, 0 )  and IN -2, k, l ) ,  IN - 1, k, 0) states respectively. Thus only I+) and 
Ik; -) states couple with a sizeable matrix element under V. 

Another important limiting case where the spectrum in equation (20) reduces to a 
simple form is for fields of moderate strength, and large detuning, i.e. lAol >> J K I ,  y. 
Results for the cases where K ’ + ~ ’ > O  and ~ ’ + f ’ <  0 differ. 

In both cases we have the approximation 

I = fbo/(& + K’ + f’)”’, 5+ = -if, 5- =-if-. 
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Case (i) K 2  + f 2  > 0. Here f- lies on the negative imaginary axis. 

A -2?ri/2f-, H = -2?ri/(6 + 2f-) 

+ 1 f - 1 ,  1 
F -””i( 

f- S2-4f?+2f S2-16f2 2[(S-A)2-4f2] 2[(S+A)’-4f2] 

1 
l +  

S-A+2f S+A+2f 

and 

F + 2  Re(-) C t *  
A - H  

5Cf-/f) + (3S-2A)/S + (3S+2A)/S 
S2-16f2 (S-A)2-4f2 (S+A)2-4f2 

Case ( i i )  K 2 +  f 2  < 0. Here f- lies on the positive imaginary axis. Now 

A - 2m/2f-, H -27ri/(S +2f-) 

+ f- 1 1 
f- m - 3  S 2 -  16f2+2[(S -A)2-4f2] 2[(S +A)2-4f2] 

1 -- Cf-lf) + 

A - H  f- S2-16f2 (S-A)’-4f2 (S+A)2+4f2 
5Cf-/f) + (3S-2A)/S + (3S+2A)/S 

S+A+2f S+4f S-A+2f 

F + 2  Re(-) Ct* -k(- 

The results in equations (24) and (25) lead to the same limit as K2+f2+0. In the 
weak-field limit, i.e. K / Y ,  Ao/y<< 1, we have 

z-iAo+f-[, 5-c =if, ( -=8f/A2=-if-  

A = 8?rif/A2, H = -271i/(S + 2f-) 

c=-(Ti / f - ) / (S+2f-)=-t* 

F-2rri15-12[l/(S-2f-)-1/(S+2f-)]- 1 6 ~ ~ y ~ S ( o - ~ ’ ) / A ~  

F + 2  R e [ C t * / ( E - H ) ] =  14n2y2S(w -o’)/A2. 

Thus in the weak-field limit, excitation by a monochromatic field leads to an elastic 
contribution only. This result naturally agrees with that obtained by the one-photon 
approximation (Heitler 1954). 

In figures 1-3 we have computed the expression in equation (20) for weak 
( K  = 0.025), medium ( K  = 1.0) and strong ( K  = 2.5) incident fields, for different values 
of detuning frequency A = o - W O .  All frequencies are in units of y. Choices of 
parameters for these figures correspond to those of Kimble and Mandel (1976) in their 
figures 5, 6 and 7. The two sets of results agree closely with each other. Elastic 
contributions are not shown in either set of results. Their comparison of the theoreti- 
cal results with the experiments of Wu et a1 (1975) and related comments need not be 
repeated here. 
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0 1 
w'- w 

1161 

Figure 1. Frequency distribution of spectral density of inelastically scattered light for 
weak fields (K = 0 , 0 2 5 ~ ) .  Intensity scales of figures 1, 2 and 3 are relative. Frequency 
scales are in units of y .  w ' ,  w are the frequencies of scattered and incident light. Detuning 
frequency A = w - WO. 

I I I I I 

0 2 3 
b - w  

Figure 2. Frequency distribution of spectral density of inelastically scattered light for 
intermediate fields ( K  = y )  for detuning frequencies A = 0, O.Sy, y and 1 . 5 ~ .  
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U'-  w 

Figure 3. Frequency distribution of spectral density of inelastically scattered light for 
strong fields ( K  = 2.57) for detuning frequencies A = 0, 1.5y, 3 y  and 5y. 

5. Discussion 

Since the first draft of this manuscript was submitted, Mollow (1975) has rederived his 
earlier (1969) result by a procedure that does not involve the assumption of factorisa- 
tion of the density matrix into that of the atom and the field. In that paper he 
concludes that the solution for the amplitudes b?., , , ( t)  obtained by turning off the 
decay of a state with a large number of scattered quanta leads to scattered electric 
fields that are non-vanishing only over a spherical shell of approximate thickness c /  y, 
whereas the exact solution obtained from equation (13) or equation (A.7) leads to 
fields uniformly distributed between r = 0 and r = ct. We shall take up a detailed 
comparison of our solution with that of Mollow in a forthcoming publication. Here in 
the appendix we simply demonstrate that the solution in equation (13) or equation 
(A.7) leads to a photon emission rate spectrum identical with that obtained in 
equation (20). Thus the Heitler-type procedure of turning off the decay of the state 
with a large number of scattered quanta leads to correct power spectra. 

It is interesting to compare the methods of Mollow (1969, 1975), Cohen- 
Tannoudji and Reynaud (1977) and Kimble and Mandel (1976) with the method of 
this paper. 

For dipole coupling in a two-level system one can show from the Heisenberg 
equation of motion, that the far electric field operator is proportional to the sum of the 
atomic raising and lowering operators. Thus to determine the spectral density of the 
scattered field one should calculate the two-time correlation function of the atomic 
dipole operator. Though this is usually done with the aid of the quantum regression 
theorem (Mollow 1969, Cohen-Tannoudji and Reynaud 1977), Kimble and Mandel 
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(1976) have shown that they can be obtained by a simultaneous solution of a set of 
related correlation functions. 

Though Mollow’s original derivation (1969) involved the Markoff assumption of 
factorisation of the density matrix of the atom and the radiated field, his later (1975) 
derivation avoids this assumption by solving the coupled equations of motion of 
bilinear products of amplitudes of vectors in the four subspaces in which the atom is in 
one of its two states and the scattered field contains 0 or 1 quantum of the detected 
mode. 

Cohen-Tannoudji and Reynaud (1977), using the strong-coupling basis similar to 
ours, start with the master equation for the density matrix (T of the atom (+ incident 
field) obtained by the factorisation assumption above. The equations for 
(a ,  Nlalp, Ni 1) (a ,  p = * of our equation ( la ) )  are uncoupled under the ‘secular 
approximation’ ( I ~ / K ~ c  1). The coupling of amplitudes of b?...,(t) to those of 
bf, . , t , , ,n(t)  in equations (4) reveals itself as coupling of density matrix elements of 
adjacent N-values. This procedure yields the line position and their relative heights 
and widths only for strong resonant incident fields where the secular approximation is 
valid. 

All these methods involve the assumption of atomic transit times in the incident 
field of duration being very much greater than y - l .  For transit time of the order of 
y they all appear to involve comparable labour. -1 
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Appendix 

In this Appendix we demonstrate that the power spectrum obtained from the rate of 
emission of photons in the steady state is identical to that in equation (20) obtained by 
turning off the decay of a state with large enough number of scattered quanta and 
calculating the long-term distribution of conditional probabilities in the frequency of 
one of the scattered modes. 

Though we can start from the results in equations (13) and (14), it is of interest to 
utilise the non-Hermitian Hamiltonian derived by Mollow (1975) valid for the case of 
a two-level atom in a coherent monochromatic field. For this case Mollow has shown 
that the incident field can be replaced by a c-number field and that the term that leads 
to absorption of quanta that had been previously emitted can be rewritten to yield a 
modified Hamiltonian, in the dipole approximation: 

H ( t )  = Ho(t)+Hr(t) (A. 1) 

Ho(t) = h(wo-$ir)b+b +HoF- (p* . ET (0, t)b + adj) ( A 4  

where 
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Hl( t )=  -p* . Ei(0)b.  (A.3) 

Here b = IO)( 11 is the atomic de-excitation operator, E ;  (0) is the negative frequency 
part of the vacuum electric field operator at the atom, E, and ET are the positive and 
negative frequency parts of c -number field that accurately represents the incident 
single-mode coherent field, and p = (114 IO). HOF is the Hamiltonian for the free field 
and the decay constant y has been defined in the text. 

For simplicity we shall restrict our discussion to the case of intense resonant 
incident field. The eigenfunctions of Ho(t) of eigenvalues A?,.,,, may be written as 

lkl, . . . , k, ; *) = 2- ' /7k l ,  . . . , k,)(/O) + C,ll)) 

c, = (i y /  4K * z /  2K ) = * 1 ; K=-/L.Ec(O) ('4.4) 
A = O s l ~ / ~ l < <  1 

A:..., =l[d*(d2+4K2)1/2]+w1+. . . + U ,  -nw - - i y / 4 * ~  + ~ ~ 2 . . . ,  

1 .  1. = h-$y = w - w o - y y  1 - g  y 

where the results have been adopted for a near-resonant intense incident field. The 
functions Ikl, .  . . , k , ;  *) in (A.4) are not orthogonal to each other. Instead the 
biorthogonal set defined by 

are orthogonal to the kets Ikl, .  , . , k,; i). Expanding the state vector in the kets in 
(A.4) in the Schrodinger picture as 

it) = b' e-i"'rl+)+b- e - i A - r l - )  
CD 

+ 1 1 (b;,,,,, e-iA;-n'Jkl,. . . , k,; +)+ by..., e-iAT n r l k l , ,  
n = l  k l , , . , , k , ,  

we can solve for the Fourier transform of the amplitudes b ? ~ . . . , ( f )  as 

where 

As pointed out before, in the intense-field limit, C = 2-"2, C, = *l: 

1 
2 m  b:...,(t)= -- J d E  exp[-i(E-h :... ,)tlbT ... ,(E). 

The probability of finding the system in the state Ikl, . . . , k , )  is obtained from the 
scalar product of It) with ( k l ,  . . . , k , ;  *I exp(ih?.*,t). The rate of emission of quanta in 
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the mode k l  (frequency = w l )  is obtained from the integrals 

1 d E  
dt - exp[i(E -A?.*n)t] =Tb 1 2 m  

dE '  
exp [-i (E' - A 7..  . n )t I b f.*n (E  )b ?.. . n (E')  

1 "  -- - 4 T 2  I-, dEIb? ... n(E)12 

W(k1) = I-, d E  f C (IbT ... n(E)12+ IbY ... n(E)12). 

as 
m 

64.9) 
n = l  k2, ..., k, 

From (A.7) and (A.8) it can be shown after some tedious calculations that 
m 

d E  (IbT ... n(E)Iz+ IbT...n(E)12) 
I-m 2, .... n 

IvI2 2T - ---[8n R e g + 2 R e 1 2 + 2 R e 1 2 ( 2 - m ) + R e 1 2 [ 4 - m ( 2 - m ) ] + .  . . 
8n Y 

+23-n Re 12(2n-3-m{2n-4-m[. . . -m(2-m)] .  . . } )  

+24-n Re 12(2n-2-m{2n-3-m[. . . (2-m)] .  . .})I (A.lO) 

where 

g = [ 1 /S - 1 /(S + 2 )][ 1 /(S + 2f) - 1 /(S + 2 + 2f)] + (2 + -2 ) 

= 1/(S + 2 + 2f) - 1 /(S - 2 + 2f) 

m = 2f[ 2/ (6 + 2f) - 1 /(S + 2 + 2f) - 1 / (S - 2 + 2f)l 

f = -1- 41Y; = (kl, OIH1I1); S=w1-0.  

(A.lO) may be used to yield the n-sum in equation (A.9) as 

w(k l )=  la ~ E ( I ~ : ( E ) I Z + I ~ ; ( E ) I ~ +  f c (tb;...n(E)12+1b;..(E)12)) 
-m n = 2  k2. ... kn 

n - 1  n -2  1 
n-m 2~ n n n 

= lim - T I v  "( 4 Re g + - Re 1' + - Re 12m..  .+. . .+-Re  12mn-2 

l 2  
= lim - T ' v 1 2 ( 4  Re g + R e  +n(1+ m +. . . + n ~ " - ~ )  

n-wm 2~ n 

- [ 1 + 2 m + 3 m 2 + .  . .+(n- l )m"-2  

I:--- T1u '2[4Reg+Re12/ (1-m)] .  
2Y 

(A. 11) 

This result is easily verified to be identical with the intense-field result in equation (21) 
in the text. 
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